
 

 

  
 

 
 

 
Abstract—Wireless sensor networks (WSNs) are typically 

resource constrained network due to restricted parameters like power 
supply, processing speed, memory requirement and bandwidth 
required for communication. Energy consumption is a key issue in 
the design of protocols and algorithms for WSNs due to their limited 
power supply. WSN operations involve sensing of data, computation, 
switching from node to node, transmission etc. In all these 
operations, energy efficiency is very essential. It is found in literature 
that, most of the energy is consumed in WSNs is due to the radio 
communications. In radio communication if the number of bits of 
data to be transmitted is reduced by some amount then it is possible 
to reduce the energy consumption. Hence it is essential to use data 
compression to reduce the number of bits to be transmitted. 
Researchers have investigated many energy efficient light weight 
compression algorithms suitable for WSN data. Still there is a 
requirement for efficient compression algorithms for WSN which 
minimizes the mean square error (MSE) of received data and hence 
in this paper differential encoding based compressed sensing (CS) 
algorithm is suggested. A CODEC design is suggested for improving 
the reconstruction quality. Simulation results show improvement in 
reconstruction quality and reduction in MSE value compared to 
standard compressed sensing technique. 
 

Keywords—Wireless Sensor Networks, Compressed Sensing, 
Differential Encoding.  
 
 
 

I. INTRODUCTION 
IRELESS sensor network [1] , consists of large numbers 
of sensors which collect sensor data. Physical data 
sometimes are highly correlated in nature and thus can 

be utilized to improve compression ratio. Before transmission  
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it is essential to reduce the dimension or size of the 
measurements in order to improve the transmission efficiency 
[2] as in literature it is found that most of the energy 
consumption is due to radio transmission [3]. Many algorithms 
for data compression [4] in WSN are considered in literature 
with the objective to improve the reconstruction quality. This 
paper is aimed to discuss compressed sensing (CS) algorithm  
with differential encoding as a better compression algorithm 
suitable for WSN. A CODEC design based on Lloyd’s 
algorithms also suggested for further improvement of 
compression ratio with reduced Mean square Error (MSE) for  
data transmission in WSN. The encoded data is compressed by 
CS and quantized using a quantizer which works on Lloyd 
algorithm. This suggested technique is suitable for any 
scenario in WSN, where continuous data transmission is 
necessary.  

II. RELATED WORK 
   In [5], the authors have presented two methods for carrying 
out compressed sensing with quantized measurements: the 
regularized maximum likelihood, and another method based on 
regularized least squares. Results of numerical simulations 
show that both methods work relatively well, however the 
effectiveness of the methods are not discussed with respect to 
Mean Square Error (MSE). 
   In [6], the authors have proposed a simple and efficient CS 
encoder device to measure signals within sensor nodes of a 
WBAN. As the CS encoder and decoder are tightly coupled, a 
model of the overall acquisition chain is used in the first stages 
of development and validation. A SPICE model and a 
hardware prototype of the proposed CS encoder are also 
presented. This paper discusses the compressed sensing 
encoder useful for biomedical signal only however, it does not 
discusses regarding CS encoder useful for the other signals. 
   In [7], presented an effective compressed sensing based 
prediction measurement (CSPM) encoder compatible for 
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wireless multimedia sensor networks. The compression 
performance of CSPM method is evaluated using metrics such 
as compression ratio and bit rate. The video is reconstructed 
by the orthogonal matching pursuit algorithm, however this 
paper discusses only about video signal encoding process. 
   In [8], compressed sensing (CS) algorithm is used for data 
compression in wireless sensors to address the energy and 
telemetry bandwidth constraints common to wireless sensor 
nodes. Circuit models of both analog and digital 
implementations of the CS system are presented that enable 
analysis of the power/performance costs associated with the 
design space for any potential CS application, including 
analog-to-information converters (AIC). 
    
 
 
 
 
 
 
 
 

To upgrade the quality of CS reconstruction, in [9] a proposal 
is suggested on CS area, which includes gradient sparse 
operators and CS optimized reconstruction with combination 
blocks. The advantage of this algorithm is that no change is 
needed on the encoder side and the improvement is focused on 
the decoder side. This paper is fully concentrated on decoder 
design however no encoder design is explained here. 
  From the above literature survey it is obvious that even 
though CS based compression is used for data compression in 
WSN, there is no such CS algorithm to improve the sparsity of 
the data for better reconstruction quality. Hence the suggested 
differential encoding based CS is aimed to work in the 
direction to improve the sparsity of the sensor data which in 
turn improves the reconstruction quality by reducing the Mean 
Square Error (MSE). 

III. SYSTEM DESCRIPTION 
   The system model for the proposed method for compression 
of sensor data in WSN is given in Figure 1. 
 
 
 
 

                   
 

Fig.1  System Description 
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    Explanation of the block diagram is given in following 
section. In Fig.1, x denotes input signal and x’ denotes the 
reconstructed signal. 

I. DIFFERENTIAL ENCODING TO INCREASE THE 
LEVEL OF SPARSITY 

    The input signal is a real time data (temperature data) 
obtained from the database and if we look into the data we can 
easily find that the data samples are highly correlated in 
nature. In order to increase the sparsity of the signal, 
difference sequence or delta sequence is generated by finding 
the difference between the consecutive samples of input data. 
After obtaining the difference signal the CS based compression 
is performed. CS based compression relies on two principles: 
Sparsity [9] and Incoherence.  
 
    Sparsity refers to that only very few entries in a vector or 
matrix is non zero. Incoherence says that unlike the signal of 
interest, the sampling/sensing waveforms have an extremely 
dense representation in transform domain and hence by 
exploiting these two principles of CS the reconstruction quality 
can be improved. In this paper the sparsity of the input 
measurements are improved by considering the difference of 
input samples rather than considering the raw input samples. In 
general L1 norm of a vector has the property of finding many 
coefficients with zero values or small values with very large 
coefficients and hence L1 norm can be used to find the level of 
sparsity of any measurement vector. In this paper the level of 
sparsity is measured with respect to raw input samples as well 
as difference signal and performance is compared. 
 

II. CS ENCODING AND DECODING 
  The input data X is generated from pre-processing the real 
time sensor data. Here the temperature sensor values are 
collected from database. The data is differential encoded and 
converted in to a sparse signal using a basis function. Here 
discrete cosine transform is used as the basis function; the 
sparse signal is compressed using a random sensing matrix T. 
Equation (1) describes generation of the sparse signal (s).The 
compressed signal is then quantized using codebooks and 
appropriate indices are transmitted to the decoder. 

s = Tx                                      (1) 
  In equation (1), (x) is the input signal of size (n x 1), (T) is 
the transform matrix or kernel of size (nxn) and (s) is the 
sparse representation of size (n x 1). After sparse generation, 
measurement matrix (M) of size (m x n) is used to compress 
the sparse representation’s’ of input image and compressed 
sparse output ‘y’ of size (m x 1) is generated. The compressed 
sparse output (y) is given in equation (2).  

y = Ms                                      (2) 
 The design of the encoding algorithm is generic and any 
suitable reconstruction algorithm can be used. In this work, 
Orthogonal Matching Pursuit (OMP) is used as CS 
reconstruction algorithm. 

 

III. QUANTIZATION USING NEAREST NEIGHBOUR 
CODING 

    Quantization involves mapping of samples from a 
continuous set to a discrete alphabet using fixed codebooks. 
The quantization is based on the concept of nearest neighbor 
coding. In this type of quantization, each entry of measurement 
vector is coded to its nearest code point. Therefore, given a 
fixed codebook associated with the measurement entry, the 
nearest-neighbour quantizer uses the encoding rule which 
minimizes the MSE. However, this approach does not 
necessarily guarantee that the end-to-end MSE is also 
minimized subject to fixed codebook sets. This is due to non-
linear behaviour of the sparse reconstruction function and non-
orthogonality of the CS sensing matrix. At the decoder, the 
fixed codebooks are used for decoding which is shown in 
Fig.1. 

IV. CODEBOOK DESIGN BASED ON LLOYD’S 
ALGORITHM 

    In this work a data compression technique based on 
quantized CS is proposed, where signals are compressed by 
compressed sensing and then the compressed measurements 
are quantized and the quantization parameter are transmitted 
from transmitter to the receiver.  In quantization process the 
input signal values from a large set is mapped into output 
values in a smaller set. Quantization parameters are mainly 
categorized as a partition and a codebook. Quantization of 
signal produces distortion and the distortion can be reduced by 
choosing appropriate partition and codebook parameters. In 
order to optimize the quantization parameters, the 
Lloyd’s function is used in this work. The Lloyd’s function 
optimizes the partition and codebook according to the Lloyd 
algorithm [10]. 

    A quantization partition and codebook is explained here 
with the help of example. Partition in quantization is nothing 
but several neighboring, non-overlapping ranges of values 
within the set of real numbers. The concept of partition can be 
explained using an example. If the partition separates the input 
signal or real number line into the four sets as [x(n): x(n) ≤ 0], 
[x(n): 0< x(n) ≤1], [x(n): 1< x(n) ≤ 3] and [x(n): 3< x(n)], then 
one can represent the partition as the three-element vector and 
hence partition = [0, 1, 3]. 

    A codebook tells the quantizer which common value to 
assign to inputs that fall into each range of the partition. For 
the above example, the codebook can be given by [-1, 0.5, 2, 
3].This codebook is one possible codebook for the partition [0, 
1, 3]. There are many possible codebooks for the example 
explained here but the optimum codebook can be designed 
using the Lloyds algorithm. The Lloyd's algorithm steps are 
discussed below. 

    First, assuming that the codebook (yi) which is to be 
generated using Lloyd’s algorithm are fixed. The input x is 
obviously nearest to one of the representative levels. The 
quantization result of the input x can be at most as small as 
that minimum distance. 
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            Table.1 Comparison of l1 norm value and the level of sparsity 

  

Data  

Size 

Type of Input Signal L1 norm 

value 

Level of 

Sparsity or 

Sparseness of 

(x) 

Data Set-

1(1000 

samples) 

Input Data without 

differential encoding 

4.59 X 104 2.1486 X 10-6 

Input Data with 

differential encoding 

0.0023550 X 

104 

0.3209 

Data Set-

2(1200 

samples) 

Input Data without 

differential encoding 

2249 2.1425 X 10-6 

Input Data with 

differential encoding 

28.27 0.3199 
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Table.2 Comparison of the performance in terms of mean square error for normal data and 
difference input data with size of the codebook=8 with QAM Modulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table.3 Comparison of the performance in terms of mean square error for normal data and 
difference input data with size of the codebook=8 with QPSK Modulation. 

 

 

 

 

 

 

 

 

 

 

 

Data  

Size 

Types of 

Modulation 

 Compres-

sion Ratio 

MSE for 

normal 

input 

samples 

MSE for 

difference 

input 

samples 

Dataset1 

(1000 

samples) 

QAM 50% 2.0750 0.0161 

Dataset2 

(1200 

samples) 

QAM 50% 4.9079 0.0140 

Data  

Size 

Types of  

Modulation 

Compression 

Ratio 

MSE for 

normal 

input 

samples 

MSE for 

difference 

input 

samples 

Dataset1 

(1000 

samples) 

QPSK 50% 4.5443 0.0191 

Dataset2 

(1200 

samples) 

QPSK 50% 2.1303 0.0187 
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Table.4 Comparison of the performance in terms of mean square error for normal data 
and pre-processed data with size of the codebook=16 with QAM Modulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data  

Size 

Types of 

Modulation 

Compression 

Ratio 

MSE for 

normal 

input 

samples 

MSE for 

difference 

input 

samples 

Dataset1 

(1000 

samples) 

QAM 50% 2.0383 0.0146 

Dataset2 

(1200 

samples) 

QAM 50% 4.8775 0.0139 
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Table.5 Comparison of the performance in terms of mean square error for normal data 
and pre-processed data with size of the codebook=16 with QPSK Modulation. 

 

 

Table.6 Comparison of the PRD value for normal data and differentially encoded data 
with size of the codebook=16 with QAM Modulation. 

 

 

Data 

 Size 

Type of 

Modulation 

Compression 

Ratio 

MSE for 

normal 

input 

samples 

MSE for 

difference 

input 

samples 

Dataset1 

(1000 

samples) 

QPSK 50% 4.5195 0.0136 

Dataset2 

(1200 

samples) 

QPSK 50% 4.587 0.0177 

Data 

 Size 

Types of 

Modula-tion 

 Compression 

Ratio 

PRD in case of  

normal input 

samples 

PRD in case 

of difference 

input 

samples 

Dataset2 (1200 

samples) 

QAM 50% 12.4002 0.0339 

Dataset3 (200 

samples) 

QAM 50% 14.01 0.2823 
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Fig.2   Input and Reconstructed (received) signal without differential  encoding and QAM modulation 

 

 

 

Fig.3   Input and Reconstructed (received) signal with differential  encoding and QAM modulation 
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Fig.4   Input and Reconstructed (received) signal without differential  encoding and QAM modulation 

 

 

 

Fig.5   Input and Reconstructed (received) signal with differential  encoding and QAM modulation 
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1. Start with initial representative levels yi 

 
2. Find the optimum interval boundaries (xi) corresponding to 
the yi's according to equation (3): 
 xi, opt =1/2[ yi, opt + yi-1 , opt ].                
(3) 
 
3. Recalculate new representative levels’s according to the 
equation (4): 
 

yi, opt =                     (4) 

  
In above equation the probability density function (pdf) of 
input x is given by f(x). 
 
4. If new yi’s are very different from old yi’s, then go to 2. 
     The above mentioned steps are repeated until the optimum 
quantization parameters are achieved.  
 

V. MODULATION/ DEMODULATION 
   A proper modulation scheme can improve the bandwidth 
efficiency and energy efficiency of a WSN [15].   In a sensor 
network, the lifetime of the nodes depend on the energy 
consumption of transceivers. Therefore, an optimal selection 
of modulation techniques based on the characteristics of the 
communication channel improves overall system 
performance. 
   The compressed sparse signal is quantized using Lloyd’s 
algorithm and required to be transmitted to the sink node 
.This is implemented by considering two different 
modulation schemes, i.e. QPSK and QAM. These two 
modulation schemes are widely used in a WSN.  After 
quantization, the modulated data are transmitted considering 
the transmission channel as AWGN channel. QPSK 
modulation uses four different phases to distinguish binary 
00, 01, 10 and 11. 
     QAM scheme is a combination of both analog and digital 
modulation. The  two analog message signals, or two 
digital bit streams,  are conveyed  by changing (modulating) 
the amplitudes of two carrier waves, using the amplitude-shift 
keying (ASK) digital modulation scheme or amplitude 
modulation (AM) analog modulation scheme. The two 
sinusoids, are out of phase with each other by 90° and are thus 
called quadrature carriers or quadrature components. The final 
waveform is a combination of both phase-shift keying (PSK) 
and amplitude-shift keying (ASK), or (in the analog case) of 
phase modulation (PM) and amplitude modulation. 
   In this paper, the sensor readings are quantized using 
codebooks and the corresponding indices from the codebooks 
are transmitted to the decoder. The decoder uses the indices 
and decodes the values using the fixed codebooks available at 
the receiver side. The indices are modulated using any one of 
the modulation scheme mentioned above and transmitted to 
decoder. The decoder demodulates the received index values 

and decodes the transmitted data using codebooks. Fig 1 
describes the system along with modulation. 
   The performance of the modulation schemes are analyzed 
considering ideal channel with addictive white Gaussian noise 
(AWGN). The quality of the reconstructed signal is measured 
in terms of mean square error. 

 

VI. RESULTS AND DISCUSSION 
    The performance of the algorithm is evaluated in terms of 
mean square error for the different sizes of codebooks. The 
codebooks are designed and optimized using Lloyd’s 
algorithm. The entries in the codebooks are optimized for the 
compressed signal. Two datasets are considered with size of 
1000 (dataset1) and 1200(dataset2).  The datasets are obtained 
from the database available in the literature. The real 
temperature sensor values are taken for analyzing the 
effectiveness of the algorithm. For measurement of level of 
sparsity there is no direct formula available but the level of 
sparsity can be measured by finding the L1-norm of the signal. 
If the value of L1-norm is less, then the level of sparsity is 
more [11] which is shown below in Table.1. One more 
parameter is used to define the sparsity [12] of the signal or 
vector given by equation (5). 
Sparseness of (x) =                           (5) 
 
   Where ‘x’ is the vector whose sparseness to be measured and 
‘k’ is the length of the vector. , is the L1 norm and  

 is the L2 norm. L1 norm or one norm of a vector x is 
given by   =                (6) 
and the L2 norm or two norm of a vector x is given by   

=                         (7) 
   Whenever the vector is dense, the sparseness approaches to 
zero and if Sparseness of (x) approaches to 1, the vector is 
sparse [12]. Equation (5) can be explained better with the help 
of following example. Let the vector whose sparseness to be 
measured is given by x1= [1 2 3 4]; here the length of vector x 
is k= 4.Using equation (5) the Sparseness of (x1) is 0.1743. 
Let another vector x2= [1 2 3 0], in this case the Sparseness of 
(x2) is 0.3964.Sameway if another vector x3= [1 2 0 0] is 
considered, the Sparseness of (x3) is 0.6584. From this 
explanation it is clear that as the vector consisting more 
number of zeros the sparseness of the vector approaches 
towards ‘1’.  
   In this paper to increase the sparsity of the signal, differential 
sequence or delta sequence is generated by finding the 
difference between the consecutive samples of input data. 
Hence the number of zeros have been increased as the WSN 
dataset consist similar data value. 
Table 2.and table 3. show that when the size of the input is 
1000 samples, the MSE is 2.0750 for normal input data with 
QAM modulation, whereas with differential encoding the MSE 
is 0.0161.Thus the results shows that when 1000 
measurements are compressed to 500 measurements, there is 
an reduction in MSE and quality of the reconstructed signal is 
improved with differential encoding based compressed sensing 
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technique. In case of another set of temperature reading of 
1200 samples also shows the better result in case of 
differential encoding scheme with codebook size 8. 
  
   The size of the codebooks is based on the application and the 
memory availability. The performance results using 16 code 
points are tabulated in Table 4.and in Table 5. As the size of 
the codebook increases there is further reduction in the error. 
Fig.2 and Fig.3 show the reconstructed data without and with 
differential encoding with QAM modulation. 
   In Fig.3, the reconstructed data with differential encoding 
shows better reconstruction quality compared to without 
differential encoding shown in Fig.2. .  The units of x-axis and 
y-axis values in fig.2, Fig.3, Fig.4 and Fig.5 are samples and 
degree Celsius respectively. 
   Another dataset consists 200 samples is also considered and 
reconstructed data with and without differential encoding is 
plotted below in Fig.4. and Fig.5.In this case also the result 
shows improved performance in proposed method. 
 
   The percentage of root-mean-square difference (PRD) 
between the reconstructed and the original signal is used as the 
evaluation index for reconstruction quality [13]. PRD is 
defined as: 
 

PRD =                                (8) 
 
   Where x̂ denotes the reconstructed signal and x denotes the 
original signal. , defines the L2 norm of the vector. The 
smaller the PRD, the better the reconstruction quality [14]. 
   Table 6.shows the comparison of PRD values of data with 
and without differential encoding. It is very clear that the PRD 
value is nearer to zero which ensures the perfect reconstruction 
in case of differentially encoded data. 
 
 
 

VII. CONCLUSION 
   The proposed communication protocol for wireless sensor 
network using differential encoding based compressed sensing 
technique is analyzed and the proposed algorithm improves the 
quality of the reconstructed data by reducing the mean square 
error value. Reconstructed signal quality is also measured by 
the percentage of root-mean-square difference (PRD) value. 
The PRD value between the reconstructed and the original 
signal is used as the evaluation index for reconstruction quality 
which is explained in this paper. The lesser the PRD value the 
better is reconstruction quality. The simulation result shown 
here confirms that with differential input signal the PRD is 
minimum whereas without differential input the PRD value is 
high.  The numbers of measurements which are transmitted, is 
made sparse using compressive sensing technique. The 
compressed measurements are then quantized using Lloyd’s 
algorithm and quantization parameters are transmitted using 
suitable modulation schemes. Not only the PRD value, the 

MSE is also found minimum in case of proposed technique. 
The comparison is done with normal data and differential data 
by keeping the compression ratios as constant. It is found from 
the result that, the reconstruction quality is improved using 
differential encoding based compressed sensing technique. 
Implementation of the proposed algorithm in hardware is 
suggested as future work. 
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